organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hong-Jun Zang* and Ming-Lin Guo

College of Materials and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300160, People's Republic of China

Correspondence e-mail: zhjchem@eyou.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.041 wR factor = 0.115 Data-to-parameter ratio = 13.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

In the

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

N-(2-Nitrophenyl)-1-oxo-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane-4-carboxamide

In the title compound, $C_{11}H_{11}N_2O_7P$, compression of the P– O–C angles is observed, suggesting that some strain is probably present. The configuration around phosphorus is distorted tetrahedral. In the crystal structure, N–H···O and C–H···O hydrogen-bond contacts and van der Waals forces stabilize the packing of the compound. Received 21 July 2005 Accepted 26 July 2005 Online 30 July 2005

Comment

Cage bicyclic phosphates have attracted much interest and many investigations have been reported (Allen *et al.*, 1995; Li *et al.*, 2002). It is found that cage bicyclic phosphates and their derivatives can serve as effective flame retardants in some polymers. They can produce less toxic gas and smoke compared with halogen-containing fire retardants. Therefore, they are recognized as environmentally friendly flame retardants. We report here the structure of a new cage bicyclic phosphate, namely *N*-(2-nitrophenyl)-1-oxo-2,6,7-trioxa-1phosphabicyclo[2.2.2]octane-4-carboxamide, (I).

The molecular structure of (I) is illustrated in Fig. 1. The terminal O=P bond distance is 1.447 (2) Å and the average bridging P-O distance is 1.566 (3) Å. The O=P bond length is shorter than that of O-P, because of the presence of π -bonding. The bond distances and angles are within experimental error of those in the other trialkyl phosphates whose structures are known (Nimrod *et al.*, 1968; Liu *et al.*, 1992). The O-P-O and P-O-C bond angles (about 104 and 115°, respectively) are different from the unstrained angle (about 104 and 120°, respectively) in dibenzyl hydrogen phosphate, which can be assumed to be representative of strainless angles of this type (Dunitz & Rollett, 1956). Some evidence of strain is present in (I) in the P-O-C angles of 115°. The configuration around phosphorus is distorted tetrahedral.

In the crystal structure, the nitro group N2/O6/O7 is almost coplanar with the arene ring. Atom O6 of the nitro group is involved in an intramolecular N1-H1...O6 hydrogen bond and an intermolecular C2-H2A...O6ⁱ hydrogen bond [symmetry code: (i) $x, \frac{3}{2} - y, \frac{1}{2} + z$]. The molecules are further loosely aggregated into a three-dimensional molecular network *via* a relatively weak C-H...O hydrogen bond (Table 2). A packing diagram is shown in Fig. 2.

 $D_x = 1.653 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 2576 reflections $\theta = 2.3-26.4^{\circ}$ $\mu = 0.26 \text{ mm}^{-1}$ T = 293 (2) K Prism, yellow $0.34 \times 0.28 \times 0.24 \text{ mm}$

2597 independent reflections 1865 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.028$

 $\begin{array}{l} \theta_{\rm max} = 26.4^\circ \\ h = -7 \rightarrow 10 \end{array}$

 $k = -15 \rightarrow 13$

 $l = -16 \rightarrow 14$

Figure 1

A view of the molecular structure of (I), showing the atom-numbering scheme. Dispacement ellipsoids are drawn at the 30% probability level. The intramolecular N1-H1 \cdots O6 hydrogen bond is indicated by a dashed line.

Figure 2 The packing of (I), showing hydrogen-bond interactions as dashed lines.

Experimental

A dry three-necked round-bottomed flask was charged with 2nitrophenylamine (2 mmol), 4-chlorocarbinyl-1-oxa-1-phophatrioxabicyclo[2.2.2]octane (2 mmol) and acetone (20 ml). To the stirred mixture, triethylamine (2.2 mmol) dissolved in acetone was added dropwise over a period of 0.5 h. After completion of triethylamine addition, the reaction mixture was stirred for 0.5 h at room temperature. The reaction mixture was then refluxed for another 2 h. The product was filtered off and washed thoroughly with water. The product was crystallized by slow evaporation from an N,Ndimethylformamide–water solution (1:4 ν/ν).

Crystal data

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.912, T_{\max} = 0.945$ 7022 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0526P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.041$	+ 0.5183P]
$wR(F^2) = 0.115$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} = 0.001$
2597 reflections	$\Delta \rho_{\rm max} = 0.28 \ {\rm e} \ {\rm \AA}^{-3}$
195 parameters	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	Extinction correction: SHELXL97
independent and constrained	Extinction coefficient: 0.043 (3)
refinement	

Table 1

Selected geometric parameters (Å, $^\circ).$

P1-01	1.4472 (18)	P1-O2	1.5710 (19)
P1-O4	1.5637 (17)	O6-N2	1.231 (3)
P1-O3	1.5643 (18)	O7-N2	1.221 (2)
O1-P1-O4	114.72 (10)	C1-O2-P1	114.59 (14)
O1-P1-O3	114.18 (10)	C3-O3-P1	115.97 (13)
O4-P1-O3	104.62 (10)	C2-O4-P1	114.39 (13)
O1-P1-O2	114.69 (11)	O7-N2-O6	122.0 (2)
O4-P1-O2	103.41 (10)	O7-N2-C11	118.1 (2)
O3-P1-O2	103.90 (11)	O6-N2-C11	119.86 (18)
O7-N2-C11-C10	10.7 (3)	O7-N2-C11-C6	-168.6 (2)
O6-N2-C11-C10	-169.7 (2)	O6-N2-C11-C6	11.0 (3)

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H1···O6	0.82 (3)	1.97 (3)	2.632 (3)	138 (2)
$N1 - H1 \cdot \cdot \cdot N2$	0.82 (3)	2.54 (2)	2.928 (3)	111 (2)
$C2-H2A\cdots O6^{i}$	0.97	2.59	3.511 (3)	159
$C3-H3B\cdots O1^{ii}$	0.97	2.50	3.351 (3)	147
$C7 - H7 \cdot \cdot \cdot O5$	0.93	2.19	2.824 (3)	124
$C7 - H7 \cdot \cdot \cdot O3^{i}$	0.93	2.42	3.216 (3)	144
$C10-H10\cdots O7$	0.93	2.36	2.675 (3)	100

Symmetry codes: (i) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (ii) $-x, y - \frac{1}{2}, -z + \frac{3}{2}$.

The H atom bonded to atom N1 was located in a difference Fourier map and refined isotropically. C-bound H atoms were included in the refinement in the riding-model approximation, with C-H = 0.93–0.97 Å and $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$.

organic papers

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

References

Allen, D.W., Anderton, E. C., Bradley C. & Shiel, L. E. (1995). Polym. Degrad. Stabil. 47, 67–72.

- Bruker (1997). SMART (Version 5.051) and SAINT (Version 5.06). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2000). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dunitz, J. D. & Rollett, J. S. (1956). Acta Cryst. 9, 327-332.
- Li, X., Ou, Y.-X. & Shi, Y.-S. (2002). Polym. Degrad. Stabil. 77, 383-390.
- Liu, X.-L., Sun, M., Miao, F.-M., Li, Y.-G. & Wang, J.-J. (1992). Acta Phys. Chim. Sin. 8, 100–108.
- Nimrod, D. M., Fitzwater, D. R. & Verkade, J. G. (1968). J. Am. Chem. Soc. 90, 2780–2784.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.